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1 INTRODUCTION

During the three-year period of this grant we have pursued a broad research program in control
of nonlinear systems with uncertainties.

For systems with functional uncertainties and/or bounded disturbances we have initiated
the development of a radically new robust inverse optimal design, in which a robust control
Lyapunov function is shown to be the value function for a meaningful differential game. A book
summarizing this approach is in preparation.

For systems with parametric nonlinearities we have developed systematic adaptive
backstepping designs of two types: with tuning functions and estimation-based modular designs.
This methodology is presented in our comprehensive 550-page book [B1].

Adaptive compensation of dead-zone, backlash and hysteresis nonlinearities, which are
common in actuators and sensors, was the third major direction of our research which resulted
in a systematic design methodology, summarized in our 300-page book [B2].

Details of our results are documented in 26 major journal publications and more numerous

conference papers. They are briefly reviewed in this report.

2 ROBUST NONLINEAR CONTROL

Our new approach to the design of robust controllers for nonlinear systems addresses the
fundamental problems left open by the two current nonlinear theories: geometric and H-infinity.
The tools of the geometric theory provide the needed insight into the structural properties of
ideal models, but are unable to cope with imperfections of real life models. Nonlinear analogs
of some linear H-infinity results are aimed at dealing with uncertainty, but have so far remained
local and computationally complex. Our robust control Lyapunov function and the related
concept of inverse optimality, make use of the system geometric properties and, without an
excessive computational burden, achieve a form of robust optimality.

2.1 Robust Control Lyapunov Function
[BC1, BC3, J1, J23, J24, C9, C18, C22, C23, C24, C27, C30, C33]

The robust control Lyapunov function (rclf) is a unifying concept for the feedback design of
nonlinear systems with uncertainties characterized by set-valued maps. For each fixed state
outside some bounded set, the negativity of the time derivative of rclf can be satisfied robustly
by choice of a control. In [BC3, C9, C20, C21] it is shown that the existence of an rclf is




equivalent to robust stabilizability and recursive methods (robust backstepping) are developed
for constructing rclf's for wide classes of uncertain systems.

2.2 Inverse Optimality
[J20, C21, D4}

Once an rclf is known, a robust control law is chosen which renders negative the worst-case
derivative of the rclf along trajectories of the closed-loop system. By construction, every such
control law guarantees the robust stability of the closed-loop system. The choice for such a
control law is usually made by inspection, and herein lies one potential pitfall of these designs:
not every such control law will necessarily provide adequate closed-loop performance. In fact,
the simplest choices for the control law will indeed guarantee robust stability but may result in
poor closed-loop performance. How, then, should one choose a good control law?

Our most important result in this direction is that every rclf solves the Hamilton-Jacobi-
Isaacs partial differential equation associated with a meaningful game. This is proven in [J20]
where also a formula is given for the construction of the optimal worst-case controllers. This
formula generates a family of controllers which guarantee not only robust stability but also some
level of performance. Robust control Lyapunov functions can thus be used to obtain candidates
for good controllers without the burden of having to compute solutions to the Isaacs equation.

2.3 Flattened RCLF for Softer Controls
[J4, C29]

In [J4] flattened rclf's are introduced which lead to softer controls and greatly improve
performance over the standard quadratic-like rclf's. In a typical system, the positive and
negative sections of the control activity set (the ones corresponding to positive and negative
values for the stabilizing control) are separated by the uncontrollability set. If the gap between
these sections is narrow, high gain in the feedback law is necessary for the transition from
positive to negative control values. This may cause chattering and other forms of undesirable
behavior.

A flattened rclf is an rclf for which the uncontrollability set is “thick" so that the gap
between the positive and negative sections of the control activity set is wide. A flattened rclf
therefore requires much lower gain for the transition from positive to negative control values,
and this results in softer controls and greatly improved performance. With a flattening
technique, we have also been able to extend the backstepping method to systems with

nonsmooth nonlinearities [C29].




2.4 Robustness to Measurement Uncertainty
[J19, C11, C20]

The flattened rclf is a crucial ingredient in our solution [C11] of a long-standing open problem of
achieving robustness of nonlinear feedback to errors in the state measurement. Such errors are
difficult to accommodate in nonlinear systems, especially when strongly nonlinear control is
required for stabilization. It is shown in [C11] that a large and practically important class of
nonlinear systems can be made globally input-to-state stable with respect to disturbances
affecting the state measurement. A key result here is the construction of an rclf which is so flat
that, for sufficiently large signals, the uncontrollability set is "thick" enough to encompass the
uncertainty set. Consequently, one can design a control law so that the state remains bounded
no matter how large the bound on the disturbance. An extension of these results to the output
feedback case is possible as illustrated by an example in [C20]. The fundamental limitations in

this problem are examined in {J19].

3 ADAPTIVE NONLINEAR CONTROL

Our most intensive research effort has been dedicated to, and our most significant results have
been obtained in, the development of systematic design methods for adaptive control of
nonlinear systems. The theory and design of our new adaptive controllers are comprehensively
documented in some 30 papers and presented in a tutorial fashion in our most recent 550-page
monograph [B1]. Here we only highlight some properties of the newly designed controllers.

3.1 Adaptive Backstepping Design
[B1, BC4, J2, ]9, J10, J18, J25, C1, C2, R1]

Our method of adaptive backstepping with tuning functions, radically changed the adaptive
controller design. The adaptive controller, which cannot be a certainty equivalence controller for
the original nonlinear system, is designed as a certainty equivalence controller for a modified
system. In this framework, the tuning functions are a technique for recursively generating
adaptive control Lyapunov functions [J18, C32].

An important feature of the tuning functions design is that the control law incorporates
the parameter update law [J7, J10, C1, C2]. This is another departure from the certainty
equivalence principle because, instead of treating the parameter estimates as constants, the
controller compensates for the parameter estimation transients.




3.2 Output Feedback and Modular Designs
[B1, BC2, J8, J15, J17, J21, J22, C3, C6, C13, C15, C16, C19, C26, C31, C32]

A modular approach to adaptive control is to separately design the controller and the
identifier. Until recently this was possible only for linear systems. Now we have developed
modular designs which employ new controllers that are stronger than the certainty equivalence
controllers and are applicable to nonlinear systems [J8, J15).

For full modularity, adaptive controllers for nonlinear systems have to be strong enough
to withstand the destabilizing effects of parameter estimation transients. Controllers in [J8, J15,
C16] are designed to achieve input-to-state stability (ISS) with respect to the parameter
estimation error and its derivative as the inputs.

With a controller module which achieves the above ISS property, one needs an identifier
module which is able to guarantee boundedness of the parameter estimation error and its
derivative. Two types of such identifiers have been developed. The 'swapping' identifiers [J15]
employ filters to convert a dynamic parametric model into a static one. The 'passive’ identifiers
(8] employ observers which exploit passivity of the observer error system. Identifiers of both
types employ stability strengthening to counteract the effect of parameter estimation transients.

3.3 Transient Performance Improvement
[B1, )5, C4, C7, C12, C28]

Transient performance has been a major open problem in adaptive control because the certainty
equivalence designs neglect the time-varying nature of the parameter estimates. In our new
adaptive backstepping designs we are able to quantify the transient behavior through
computable performance bounds [J5, C4]. Their dependence on design parameters provides
guidelines for systematic improvement of transient responses. This analysis has also provided
the first quantitative comparison of adaptive and nonadaptive controllers. Adaptation was
shown to improve both the transient and asymptotic performance relative to a nonadaptive

design.

4 ADAPTIVE CONTROL OF SYSTEMS WITH ACTUATOR
AND SENSOR NONLINEARITIES

Actuator and sensor nonlinearities are among the key factors severely limiting the achievable
performance of feedback control systems. Harmful effects of backlash in gears are well known.
Backlash prevents accurate positioning and may lead to chattering and limit-cycle type

instabilities.




Examples of more complex hysteresis are magnetic and piezoelectric phenomena in
solenoid actuated valves and micro-motion scanners. As a rule, materials with low hysteresis
are costly. Can inexpensive magnetic and piezoelectric materials be used, but with their
hysteresis effects removed by real-time computations? An analogous question can be raised for
actuators and sensors with "dead-zones", that is with insensitivity to small magnitude signals.

In this research we have answered these questions for piece-wise linear models of
unknown dead-zone, backlash and hysteresis. Our approach is to cancel the harmful effects of
actuator and sensor nonlinearities by implementing their inverses inside the controller. Our first
concern is that such inverses, possibly discontinuous, indeed exist. Our second concern is that
they also be parametrized as linear functions of the unknown parameters. Having passed these
two hurdles, we look for an adaptive implementation of the linearly parametrized inverses,
continuously adjusted by adaptive update laws. When they converge to the true inverses of the
unknown nonlinearities, the ideal goal of canceling the nonlinear effects is achieved: the control
loops perform as if their inexpensive actuators and sensors are perfect. We have shown that
this is the case for plants with input (actuator) nonlinearities, plants with output (sensor)
nonlinearities, and plants with both input and output nonlinearities.

When implemented with parameter estimates our inverses result in a control error which
can be expressed in two parts, one of which is parametrizable. The unparametrizable part due
to the nonsmoothness of the nonlinearities is treated as an unknown disturbance. It is crucial
that this disturbance is always bounded. The control error expression is instrumental in the
development of an adaptive law which updates the estimates of the unknown parameters.

4.1 Compensation of Actuator Nonlinearities
[B2, J3, J6, J11, J12, J16, C5, C10, C14, C25]

Two types of adaptive control problems with actuator nonlinearities have been
investigated: when only the nonlinear part of the plant is unknown, and when the whole plant
is unknown. The adaptive inverse controller consists of a linear controller structure with an
adaptive dead-zone, backlash or hysteresis inverse. When only the nonlinear part is unknown,
the adaptive inverse controller contains an adaptive inverse and a fixed linear structure. When
the whole plant is unknown, the adaptive inverse controller has a new adaptive linear structure
which results in a linearly parametrized closed-loop system suitable for the development of an
adaptive law. For both problems, the linear controller structure generates the input signal to the
adaptive inverse whose output is then applied to the plant with an unknown input nonlinearity.
The adaptive inverse parameters are updated by adaptive laws with modifications for
robustness with respect to a bounded "disturbance” - an unparametrizable error due to the




nonsmoothness of the dead-zone, backlash and hysteresis nonlinearities. In addition,
parameter projection is employed to ensure that the parameter estimates stay in a prespecified
region. Extensive simulation results show significant improvements of the system tracking

performance.

4.2 Compensation of Sensor Nonlinearities
[B2, J13, J14, C8, C17]

For sensor nonlinearities, that is, the nonlinearities at the plant output, a continuous-time design
is practically infeasible and only the discrete-time designs are developed. The difficulty with
the sensor dead-zone or backlash is that they make the sensor input unobservable from its
output. Despite this difficulty, when both the linear part and the nonlinear part are known, an
inverse control scheme is developed for achieving the output tracking of a given reference signal.
When the nonlinear part is unknown, an adaptive inverse controller is designed which consists
of a linear part and two adaptive inverses: one to invert the plant output and the other to invert
a given reference output. Two designs are presented: one for a known linear part and the other
for an unknown linear part. In simulations the designed adaptive output inverse controllers
lead to significant improvements of the tracking performance. Finally, discrete-time inverse
control schemes for plants with both input (actuator) and output (sensor) nonlinearities.

5 RESEARCH TEAM AND IMPACT

In addition to the principal investigator Petar Kokotovic, the research team included
postdoctoral researchers M. Jankovig, J. Sun, R. Ghanadan, P. Martin and R. Sepulchre, and
graduate students P. C. Yeh, M. Krstic, R. Freeman, G. Johnstone, K. Ezal, D. Fontaine, and C
Barbu. During this research period Yeh, Krstic and Freeman have completed their PhD degrees
and obtained academic positions. Krstic received two Student Best Paper Awards: at 1994
CDC and 1995 ACC. Kokotovic is the recipient of the 1995 IEEE Control Systems Award.

The results reported here have already had a significant impact on the research
community. Many other researchers have began to extend and apply methods developed by
this research team.

Some of the results are being applied in industry: Ford, Rockwell and TSI. The main
nonlinear design methodology is being applied to jet engine control problems within a new PRET
project in cooperation with UTRC and Pratt & Whitney.
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